
CIS 520 POD MATERIALS

Siming He

November 2, 2024, 02:15

Contents

1 POD 1 3

1.1 Introduction . 3

1.2 How is the course going? . 3

1.3 Entropy and Information Gain . 3

1.4 Norms . 4

2 POD 2 6

2.1 Logistics . 6

2.2 Questions Collections . 6

2.3 KNN and Decision Tree . 6

2.4 MLE and MAP . 11

3 POD 3 11

3.1 Logistic . 11

3.2 Understand how different regularization penalizes weight 11

3.3 Bias and Variance . 11

3.4 Streamwise/Stepwise/Stagewise Search . 11

3.5 Different forms of the error . 11

4 POD 4 14

4.1 Mutual Information . 14

4.2 Generalized Linear Models . 14

4.3 Gradient Descent Methods . 14

1

5 POD 5 16

5.1 Convolutional Neural Network . 16

6 POD 8 19

6.1 SVD, PCA, Autoencoder . 19

7 POD 9 22

7.1 Recommend System, Evaluation Metrics . 22

8 POD 10 26

8.1 K-Mean, GMM, EM . 26

9 POD 11 28

9.1 Naive Bayes and LDA . 28

10 POD 12 32

10.1 Reinforcement Learning . 32

2

1 POD 1

1.1 Introduction

Name, Major, Why machine learning interests you?, What is your favorite hobby?

1.2 How is the course going?

1. Welcome email and question collection

2. Wiki Page, Ed discussion

3. Worksheets, Quiz, HWs, Due Dates?

4. Latex and Overleaf

5. Colab

6. pennkey and podname

1.3 Entropy and Information Gain

H(X) = −
∑
i

P (X = xi) logP (X = xi)

=
∑
i

P (X = xi) log
1

P (X = xi)

What is Entropy?
The smallest number of bits on average per symbol to transmit a stream of symbols from distri-
bution of random variable X.
Expectation of information content (smallest number of bits on average) of a message of X (rep-
resented as bits log2 pj).
Why use log probability to encode the length of information content?
The number of combinations of states is exponential. Hence, we need exponential number of
“classes” to encode a message. Encode information content as bits.
Do you expect higher or lower entropy with more splits of a same distribution?
Splits over uniform distribution: −

∑2
i=1

1
2 log

1
2 = 1, −

∑4
i=1

1
4 log

1
4 = 2. More splits, more

uncertainty, hence higher entropy.
What about a random distribution?
Which has higher entropy?
Show density function of Uniform(0,1), Uniform(-1,1), Normal(0,1), Normal(2,5)
Related back to the definition. More chaotic, need more bits to describe it, higher entropy.
−
∫
P (X = xi) logP (X = xi)dx needs this differential entropy where perfect certain means −∞

entropy and total uncertain means ∞ entropy.
The entropy of Uniform(0, 1) is 0 but it doesn’t means its perfect certain. Such entropy is
called differential entropy (not Shannon entropy) and the perfect certain means −∞ entropy.
What is −pi log pi, pi = 0?
= 0

3

What is the relationship between information gain and entropy for a given dataset?

G(Y |X) = H(Y)−H(Y |X)

We rethink information gain under the framework of mutual information. During variable/data
selection, we want to select the data X to maximize the information gain Y . In many cases, such
information gain is also called mutual information of X and Y : I(X,Y) = DKL(P(X,Y)||PX ·PY

which is calculated differently but the result would be the same. On the Wikipedia page of mutual
information, you can find why the two are fundamentally the same. Through this formula, we
can also understand information gain as the additional bits needed to encode P(X,Y) if we have
PX ·PY . Intuitively, if X and Y are independent, we don’t need additional bits to encode P(X,Y)

and X provides no information gain of Y . And as X and Y are more dependent, P(X,Y) is more
different from PX ·PY and we need more bits to encode P(X,Y) and the information gain is higher.

1.4 Norms

Is Euclidean distance a norm?
It’s related: d(x, y) = ||x− y||2. L2 Norm could be considered as a way of calculating Euclidean
distance.
Definition of Norm and Distance:
Lp norm is ||x||p = (

∑
j |xj |p)

1
p such that

1. Lp(av) = |a|Lp(v)

2. Lp(u+ v) ≤ Lp(u) + Lp(v)

3. Lp(v) = 0 iff v = 0

Distance is dp(x, y) = ||x− y||p such that

1. dp(x, y) ≥ 0 and = 0 iff x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(x, z)

Is the number of wrong answers a norm?
It’s L1 Norm.
Is pseudo-norm L0 norm?
No, doesn’t satisfy property 1 of norm.
Does k-nn require a norm?
No - any measure of similarity or dis-similarity would work.
Why decision tree if we already have knn?
Curse of dimension. Slow with a larger dataset (need to go through data to find neighbors for
every new data point.)
What is the max dimensionality under which the knn algorithm is effective? I
assume this dimensionality should somehow depend on k.
Theoretically KNN suffers from the curse of dimension, i.e. data become sparse when dimension
is higher. Ideally, we need data to grow exponentially as dimension increases. However, it also

4

depends on the data. If the data are highly correlated (like voxels in a brain), then the data
are effectively low dimensional (though in high dimension space), so it isn’t a problem. We can
do k-nn with hundreds of thousands of features of brain voxels and a hundred observations to
predict disease.

5

2 POD 2

2.1 Logistics

Assignment of partners for Homeworks: follow the excel, if anyone wants to work alone,
please tell me.
For final project, people pick teammates by themselves, at least two people.
Make-up pod session? Friday 4:00 is the designated make-up pod with Zoom link.
How much time are you spending on the course?
How was the worksheets/homeworks/quizzes?

2.2 Questions Collections

Q: What is the max dimensionality under which the knn algorithm is effective? I assume this
dimensionality should somehow depend on k.
A: Theoretically KNN suffers from the curse of dimension, i.e. data become sparse when dimen-
sion is higher. Ideally, we need data to grow exponentially as dimension increases. However, it
also depends on the data. If the data are highly correlated (like voxels in a brain), then the data
are effectively low dimensional (though in high dimension space), so it isn’t a problem. We can
do k-nn with hundreds of thousands of features of brain voxels and a hundred observations to
predict disease.
Q: How do you draw decision boundaries for KNN? (question 2 on HW1)
A: Check where the points have equal distance to data points.

2.3 KNN and Decision Tree

Q: Parametric (parameters in a fixed function form) vs. non-parametric
A: Non-parametric model is determined by training data and overfitting is the main concern.
Parametric model form doesn’t change, training parameters for prediction.
Q: How does k-NN model form change as n gets bigger
A: more points; more resolution
Q: How does a Decision Tree model form change as n gets bigger?
A: deeper tree since needs to recursively split more times
Q: How does a linear regression model form change as n gets bigger?
A: it doesn’t
Q: Is the decision tree the optimal way to split data?
A: it is not since decision tree is greedy. It’s possible to get a beeter tree by splitting some
"worse" features first.
Q: Effect of noise if 90 percent of features are random on KNN and Decision Tree?
A: Decision tree is good at filtering out noise because it’s doing feature selection through infor-
mation gain (random features have low information gain). For KNN, if there is too much noise,
random features will make the prediction not good.
Q: Effect of noise if 10 percent of label are random on KNN and Decision Tree?
A: For KNN, choose bigger k would improve performance. For decision tree, don’t make the tree
too deep (overfitting to the noise).

6

2.4 MLE and MAP

Q: What are MLE and MAP? How are they related?
A: MAP weights by the prior, if the prior is “flat” then it has no effect
Q: What effect does p(x) have on linear regression ?
A: None: It is a conditional probability; we aren’t modeling p(x,y), just p(y|x) We don’t care
what p(x) is Why is this important? p(x) can be really complex: e.g. x can be an image or a
wiki page. It’s much easier to do supervised learning than do generative model.
Q: Will all the weights found by Ridge Regression always be smaller than the weights found by
OLS?
A: No – only the L2 norm of the weights must be smaller
Q: What happens to an OLS model if you change one of the features from inches to centimeters.
A: Y = c0 + c1 x(inches) + c2 x(dollars) Y = c0’ + c1’ x(cm) + c2’ x(dollars) ANS: x is 2.6
times as big, so c1’ is smaller than c1
Q: What happens to a Ridge Regression model if you change one of the features from inches to
centimeters?
A: Y = c0 + c1 x(inches) + c2 x(dollars) Y = c0’ + c1’ x(cm) + c2’ x(dollars) ANS: since c1’
is smaller, it is shrunk less than c1 We’re made size appear more important
Q: What is a “conjugate prior”?
A: One the you multiply and it gives a distribution of the same form Why are they important?
Makes the math pretty? What two examples have we seen? bernoulli/beta, gaussian/gaussian
Q: We shrink weights towards zero in linear regression; are there cases where you might want to
shrink towards something else?
A: Yes, shrink to what you think it would be. Shrink to 0.5.

3 POD 3

3.1 Logistic

1. Attendance

2. Questions on the course materials?

3.2 Understand how different regularization penalizes weight

3.3 Bias and Variance

3.4 Streamwise/Stepwise/Stagewise Search

3.5 Different forms of the error

11

4 POD 4

4.1 Mutual Information

4.2 Generalized Linear Models

4.3 Gradient Descent Methods

Q: Can we define clearly the terms such as regularization, shrinkage, strong/weak prior? And
where they come in linear regression?
A: Regularize the complexity of the model to deal with overfitting! Shrinkage of weights is
the result of regularization at least in linear regression case. Strong/weak prior means more/less
informative prior. λ = σ2

γ2 . More informative prior means smaller γ which means larger λ, more
regularization!
Read Bishop PRML Section 1.1 and Section 3.1.4. And Andrew Gelman Bayesian Data Analysis
Section 2.4 for more information.
Q: Why is KL divergence not symmetric?
A: DKL(P ||Q) =

∑
x∈X P (x) log P (x)

Q(x) . Because it measures how a distribution differs from the
true distribution. It’s not the same as how a true distribution differs from a distribution. Which
one is true distribution? P is the true distribution and KL divergence is the expectation of
difference between the expectation of the logarithmic difference between the probabilities.
Q: Information gain and mutual information and KL divergence?
A: In many cases, such information gain is also called mutual information of X and Y : I(X,Y) =
DKL(P(X,Y)||PX · PY) which is calculated differently but the result would be the same. On the
Wikipedia page of mutual information, you can find why the two are fundamentally the same.

14

5 POD 5

5.1 Convolutional Neural Network

16

6 POD 8

6.1 SVD, PCA, Autoencoder

19

7 POD 9

7.1 Recommend System, Evaluation Metrics

22

8 POD 10

8.1 K-Mean, GMM, EM

26

9 POD 11

9.1 Naive Bayes and LDA

28

10 POD 12

10.1 Reinforcement Learning

32

Heine-Borel, Bolzano Weierstrass, and Examples of
Convergence of Functions

Siming He, Bruce Lee

September 7, 2024

1 Review of Convergence of Functions

Definition 1 (Pointwise convergence) Let (fn)
∞
n=1 be a sequence of functions from one

metric space (X, dX) to another (Y, dY), and let f : X → Y be another function. We say
that (fn)

∞
n=1 converges pointwise to f on X if we have

lim
n→∞

dY (fn(x), f(x)) = 0.

for all x ∈ X. Equivalently, for all x ∈ X and all ϵ > 0, there exists N such that
dY (fn(x), f(x)) < ϵ for all n > N .

Definition 2 (Uniform convergence) Let (fn)
∞
n=1 be a sequence of functions from one

metric space (X, dX) to another (Y, dY), and let f : X → Y be another function. We say
that (fn)

∞
n=1 converges uniformly to f on X if for every ε > 0 there exists N > 0 such that

dY (fn(x), f(x)) < ε

for all n > N and all x ∈ X. We call the function f the uniform limit of the functions fn.

2 Examples of Convergence of Functions

Which of the following sequences of functions are pointwise convergent? Uniformly conver-
gent? If they are convergent, then what are their limits?

• {fn}, where fn : [0, 1] → R is defined by fn(x) = xn.

Answer: fn(x) converges pointwise to f(x) =

{
0 if x ∈ [0, 1)

1 if x = 1
. It doesn’t converge

uniformly which can be proved by contradiction. Assume that {fn} converges uni-
formly. For any of ϵ ∈ (0, 1/2), there exists N such that |fn(x) − f(x)| < ϵ for all
x ∈ [0, 1] and all n > N . For x ∈ [0, 1), we have fn(x) < ϵ < 1/2 since f(x) = 0.
For x = 1, we have fn(x) > 1 − ϵ > 1/2. It means that fn is not continuous which
contradicts the fact that xn is continuous.

1

• {fn}, where fn : [0, 0.99] → R is defined by fn(x) = xn.
Answer: fn(x) converges pointwise and uniformly to f(x) = 0. To prove that it
converges uniformly, we show that for any ϵ > 0, there exists an N such that |fn(x)−
f(x)| = fn(x) ≤ 0.99n < ϵ for all n > N .

• {fn}, where fn : R → R is defined by fn(x) = x+ n.
Answer: Diverge.

• {fn}, where fn : R → R is defined by fn(x) =
1
n
.

Answer: Converge both pointwise and uniformly.

• Let △(x) =

0 x ≤ −1

1 + x −1 ≤ x ≤ 0

1− x 0 ≤ x ≤ 1

0 x ≥ 1

Consider {fn}, where fn : R → R is defined by

fn(x) = △(x− n).
Answer: Converge pointwise to f(x) = 0. It doesn’t converge uniformly since there
will always be some x with fn(x) = 1 > ϵ for all ϵ < 1.

3 Uniform Convergence in Proof of the Independence

of Binary Digits

This section is covered on page 147 of ToP.
On page 147, the proof of the independence of binary digits uses the fact that

∑n
k=1 xrk(t)2

−k

converges uniformly to x(1 − 2t). To show the uniform convergence, we begin by defining
fn(t) =

∑n
k=1 xrk(t)2

−k and f(t) :=
∑∞

k=1 xrk(t)2
−k. |f(t)− fn(t)| = |

∑∞
k=n+1 xrk(t)2

−k| ≤
|
∑∞

k=n+1 x2
−k| ≤ |x|

∑∞
k=n+1 2

−k = |x|2−n which goes to zero as n goes to infinity.
The proof of the independence of binary digits relies on the uniform convergence to

interchange the integral and limit, i.e.,

lim
n→∞

∫ 1

0

exp (ifn(t)) dt =

∫ 1

0

lim
n→∞

exp (ifn(t)) dt =

∫ 1

0

exp (if(t)) dt

To prove the interchange is permissible, we want to prove that | limn→∞
∫ 1

0
exp (ifn(t)) dt−∫ 1

0
exp (if(t)) dt| = 0. The proof eventually comes to∣∣∣∣ limn→∞

∫ 1

0

exp (ifn(t)) dt−
∫ 1

0

exp (if(t)) dt

∣∣∣∣ < lim
n→∞

∫ 1

0

|fn(t)− f(t)| dt

By uniform convergence, we know that for any ϵ > 0, there exists N such that |fn(t)−f(t)| <
ϵ for all n > N and t ∈ [0, 1]. It implies that

∫ 1

0
|fn(t)− f(t)| dt < ϵ for any ϵ.

2

4 Heine Borel Theorem

A cover of a subset I on the real line is a collection {Un, n ≥ 1} of sets whose union contains
I. It is an open cover if each Un is an open interval (an, bn). A subcover is a subcollection
whose union also contains I. A finite subcover contains only a finite number of sets. If
every open cover of a set I has a finite subcover, we say that I is compact.

Theorem 1 Heine-Borel Theorem: Suppose I is a closed and bounded interval. Then I
is compact, i.e. every open cover of I has a finite subcover.

Proof sketch: Let I = [a, b], and {Un} be an open cover for I. Let

A = {x ∈ I|[a, x] can be covered by a finite subcollection of {Un|n ≥ 1}}

Note that A is nonempty, and bounded above and below by a and b respectively. Then the
supremum c = supA ∈ [a, b] exists. To prove that I has a finite subcover, we want to show
1) c ∈ A and 2) c = b.

Since c is in I, it’s in some open interval Ui = (c− ϵ, c+ δ) ∈ {Un}. Since c is supremum
of A, we know there exists x ∈ (c− ϵ, c) such that x ∈ A. Let denote the finite cover of [a, x]
as U1, ·,UN . Then, it’s clear that U1, ·,UN ,Ui is a finite cover of [a, c], i.e., c ∈ A.

We assume for contradiction that c ̸= b. Then, there exists an element y ∈ (c,min(c+δ, b).
Then, U1, ·,UN ,Ui is also a finite cover of [a, y], i.e. y ∈ A. Since y > c, it contradicts with
the condition that c is the supremum of A. ■

Example 1 Let I = [0, 1] be a closed and bounded interval in R.
1. Consider the countable collection of open intervals {An}∞n=1, where An =

(
1

n+1
− 0.1, 1

n
+ 0.1

)
for each natural number n ∈ N. Show that {An}∞n=1 forms an open cover of the interval [0, 1].

2. Find a finite subcover {An1 , An2 , . . . , Ank
} that still covers the interval [0, 1].

Example 2 Let I = (0, 1).
1. Is {An}∞n=1, where An =

(
1
n
, 1
)
for each n ∈ N an open cover of (0, 1)? Answer:

Yes.
2. Is there a finite subcover? Answer: No.

Example 3 Consider the set [0,∞). Is this set closed? Is this set bounded? Now consider
the open cover {Un, n ≥ 1} where Un = (−0.01, n). Justify that this is a cover. Does there
exist a finite sub-cover?

5 Bolzano-Weierstrass Theorem

Theorem 2 Bolzano-Weierstrass Theorem Every bounded sequence has a convergent
subsequence.

3

Proof sketch: Suppose that {xn} is a bounded sequence. Then there exist some M > 0
such that |xn| ≤ M/2 for all n. Then at least one of the subintervals [−M/2, 0] and [0,M/2]
contains an infinite number of members of the sequence. These members form a subsequence
{x1n|n ≥ 1}. This is now a bounded sequence, so we may continue to bisect the interval and
find a subsequence contained in one of the halves, labeling the jth such subsequence {xjn}.
The jth subsequence will be in an interval of length M

2j
. Then if we define the subsequence

{yn} by yn = xnn, we see that {yn} is a subsequence of {xn} and that {yn} is a Cauchy
sequence: given any ϵ > 0, there existsN such that |yn − ym| ≤ ϵ for n,m ≥ N . In particular,
if we set N = log2(M/ϵ), then for n,m ≥ N , yn and ym are contained in an inteval of length
M/2log2(M/ϵ) = ϵ. The sequence {yn} is thus convergent by the completeness of the real
numbers.

Example 4 Let {xn} be the sequence defined by xn = (−1)n + 1
n
. Show that the sequence

{xn} has a convergent subsequence and find the limit of that subsequence.
Answer: It has a convergence subsequence since it’s bounded between -2 and +2. The
subsequence {x2k} converges to 1. The subsequence {x2k+1} converges to −1.

More complete proofs of both Heine-Borel and Bolzano-Weierstrass may be found on
page 776 of the text.

4

Information Theory Recitation

Siming He, ESE 5460

November 2023

Contents

1 Elements of Information Theory 1

2 Information Bottleneck in Deep Learning 5
2.1 Optimization Phases of Neural Network 7
2.2 Input Compression Bound . 7
2.3 I(T, Y) and Performance . 9

3 References 9

1 Elements of Information Theory

Information theory was developed as a mathematical theory of communication.
A communication system can be divided into five parts:

source → transmitter → channel → receiver → destination

1. Source is the message that we want to send to the destination, e.g. text
messages, images, videos

2. Transmitter converts the message into some signals that can be trans-
mitted. For example, Morse code converts numbers and English alphabets
into dots and dashes. Dots and dashes signals can be easily transmitted
by short-duration light/sound and long-duration light/sound.

3. Channel is the medium used to transmit signal. For example, air trans-
mits light/sound. And wires transmits pulses of voltages.

4. Receiver performs an inverse operation of transmitter to reconstruct mes-
sages from signals.

5. Destination would be the person who receives and reads your text.

Two fundamental questions that are essential to communication system and can
be answered by information theory.

1

1. What is the maximal compression of data? We want the commu-
nication system to be energy-efficient, i.e., spend the minimum amount of
energy to transmit messages. To achieve this, we want to (maximally and
losslessly) compress our messages.

2. What is the maximum rate that data can be transmitted? The
maximally compressed message would work well if the channel is noise-
less. However, if the channel is noisy, compressed messages may be easily
corrupted by the noise during transmission. To make the signal robust
to noise, we also want to add redundancy into the signal. So the max-
imum rate of transmission depends on both compression and necessary
redundancy.

To understand the design of transmitter or encoder, we have to understand
the information in the source or input. However, the concept of information
is vague and broad and is hard to be formulated mathematically. Instead, we
can define a measure of the amount of information in a random variable. For a
probability distribution P (n) = (p1, · · · , pn) over an alphabet of size n, we want
to find an information measure Hn(p1, · · · , pn) characterising the information
content of chance experiment with P (n). Shannon argued that there are three
required properties of desirable information measure:

1. Hn(p1, · · · , pn) is a continuous function of p1, · · · , pn. This is intuitive
since a small change in the probability distribution shouldn’t lead to a
sudden jump in information content.

2. For Hn(p1, · · · , pn) where p1 = · · · = pn, Hn should be a monotonic
increasing function of n. Intuitively, more events leads to more uncertainty
and more information. Rolling a dice seems to be more complex than
flipping a coin.

3. The measure should have Hn(p1, · · · , pn) = Hn−1(p1 + p2, p3, · · · , pn) +
(p1 + p2)H2(

p1

p1+p2
, p2

p1+p2
). For example, H3(

1
2 ,

1
4 ,

1
4) should be equal to

H2(
1
2 ,

1
2) +

1
2H2(

1
2 ,

1
2). Intuitively, if the information measure measures

the amount of information in a chance outcome, how the source pro-
duces such outcome shouldn’t change the amount of information. For
example, the source can flip a magical coin that is head with proba-
bility 1

2 , is tail with probability 1
4 , stands up with probability 1

4 . The
source can also flip a fair coin and flip the coin again if the first flip
results in tail. Those two process gives the same chance outcome so
should contain the same amount of information. For the second pro-
cess, we firstly gain the information of H2(

1
2 ,

1
2). Then with probabil-

ity 1
2 , we gain additional information H2(

1
2 ,

1
2) from the second round.

2

1. What is the maximal compression of data? We want the communication sys-
tem to be energy-efficient, i.e., spend the minimum amount of energy to transmit
messages. To achieve this, we want to (maximally and losslessly) compress our
messages.

2. What is the maximum rate that data can be transmitted? The maximally
compressed message would work well if the channel is noiseless. However, if
the channel is noisy, compressed messages may be easily corrupted by the noise
during transmission. To make the signal robust to noise, we also want to add
redundancy into the signal. So the maximum rate of transmission depends on
both compression and necessary redundancy.

To understand the design of transmitter or encoder, we have to understand the in-
formation in the source or input. However, the concept of information is vague and
broad and is hard to be formulated mathematically. Instead, we can define a mea-
sure of the amount of information in a random variable. For a probability distribution
P (n) = (p1, · · · , pn) over an alphabet of size n, we want to find an information mea-
sure Hn(p1, · · · , pn) characterising the information content of chance experiment with
P (n). Shannon argued that there are three required properties of desirable information
measure:

1. Hn(p1, · · · , pn) is a continuous function of p1, · · · , pn. This is intuitive since a
small change in the probability distribution shouldn’t lead to a sudden jump in
information content.

2. For Hn(p1, · · · , pn) where p1 = · · · = pn, Hn should be a monotonic increas-
ing function of n. Intuitively, more events leads to more uncertainty and more
information. Rolling a dice seems to be more complex than flipping a coin.

3. The measure should have Hn(p1, · · · , pn) = Hn�1(p1+p2, p3, · · · , pn)+(p1+
p2)H2(

p1

p1+p2
, p2

p1+p2
). For example, H3(

1
2 , 1

4 , 1
4) should be equal to H2(

1
2 , 1

2)+
1
2H2(

1
2 , 1

2). Intuitively, if the information measure measures the amount of infor-
mation in a chance outcome, how the source produces such outcome shouldn’t
change the amount of information. For example, the source can flip a magical
coin that is head with probability 1

2 , is tail with probability 1
4 , stands up with

probability 1
4 . The source can also flip a fair coin and flip the coin again if the

first flip results in tail. Those two process gives the same chance outcome so
should contain the same amount of information. For the second process, we
firstly gain the information of H2(

1
2 , 1

2). Then with probability 1
2 , we gain addi-

tional information H2(
1
2 , 1

2) from the second round.

head(1/2) tail(1/4) stands(1/4)
head(1/2) tail(1/2)

head(1/4) tail(1/4)

2

Definition 1.1 (Entropy). The only H satisfying the three properties above is
in the form of H = −K

∑n
i=1 pi log pi. K is basically the unit of the measure

and can be 1. Then, we have the definition of entropy:

Hn(p1, · · · , pn) = −
n∑

i=1

pi log pi

For a random variable X, we can also write the entropy as

H(X) = −
∑
x

p(x) log p(x)

Remark. The quantity − log p(x) can be viewed as the information content of
event x. The quantity aligns with our intuition that rare events should contain
more information − log p(x) > − log p(y) when p(x) < p(y). Entropy can be
viewed as the expected information content from a random variable.

Remark. Another view of entropy is that entropy of a random variable is a lower
bound on the average length of the shortest description of the random variable.
For each event x, we can encode it by lx bits. Then, the expected length of
the description of X is

∑
x p(x)lx. Gibbs’ inequality shows that when lx =

− log2 p(x), we have the shortest expected length. Specifically, the inequality
states −∑

x p(x) log p(x) ≤ −∑
x p(x) log q(x) for any description with length

lx = − log q(x). It’s reasonable to use the shortest expected length of description
as a measure of information, since a process with more information inevitably
requires more bits to describe.

Definition 1.2 (Joint Entropy and Conditional Entropy). The joint entropy
of a pair of discrete variables (X,Y) with joint distribution p(x, y) is defined as

H(X,Y) = −
∑
x

∑
y

p(x, y) log p(x, y)

The conditional entropy H(y|X) is then defined as

H(Y |X) = −
∑
x

p(x)
∑
y

p(y|x) log p(y|x)

=
∑
x

p(x)H(Y |X = x)

Following the chain rule of probability, we also have the chain rule for en-
tropy:

3

Theorem 1 (Chain Rule).

H(X,Y) = H(X) +H(Y |X)

Definition 1.3 (Relative Entropy / Kullback–Leibler(KL) Divergence). The
relative entropy between two probability mass functions p(x) and q(x) is

D(p||q) =
∑
x

p(x) log
p(x)

q(x)

KL Divergence measures the dissimilarity between two probability mass func-
tions. However, KL Divergence is not a distance measure since it’s not symmet-
ric.

Theorem 2.

D(p||q) ≥ 0

and

D(p||q) = 0 if and only if p = q

Definition 1.4 (Mutual Information). The mutual information between two
random variables X,Y is

I(X;Y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)

= D(p(x, y)||p(x)p(y))
= H(X) +H(Y)−H(X,Y)

= H(X)−H(X|Y)

= H(Y)−H(Y |X)

Mutual information measures the amount of information that one variable con-
tains about another. This measure is symmetric.

This image demonstrates the relationship between mutual information and en-
tropy. H(X,Y) can be viewed as the information contained in joint (X,Y).
H(X,Y) ≤ H(X) + H(Y) since X and Y may have some shared information
I(X,Y). H(X|Y) measures the amount of additional information we get fromX
if we already know Y , so we need to remove the amount of shared information:
H(X|Y) = H(X)− I(X;Y).

4

Theorem 3.

I(X;Y) ≥ 0

and

I(X;Y) = 0 if and only if X and Y are independent

Theorem 4 (Data-processing Inequality). If we have of Markov chain of three
random variables X → Y → Z, i.e., Z is conditionally independent from X
given Y , then

I(X;Y) ≥ I(X;Z)

Remark. This is a really cool theorem! There is no data processing Y → Z
such that we can get more information about X. Consider image classification
as an example. Let X be the label of images. Let Y be images generated from
the labels. And let f be a neural network converting Y into some embedding
Z = f(Y). We have a Markov chain X → Y → f(Y). And based on this
theorem, we know that I(X;Y) ≥ I(X; f(Y)). It means that neural networks
are not processing images to gain more information about Y ! So what are neural
network actually doing from an information-theoretic view? We will soon talk
about information bottleneck which answers the question to some extent.

Definition 1.5 (Sufficient Statistics). Given a family of probability mass func-
tions {fθ(x)}. A statistic T (X) is a function of the sample X from {fθ(x)}, e.g.,
sample mean or sample variance. We have a Markov chain θ → X → T (X). By
Data-processing Inequality, we have

I(θ, T (X)) ≤ I(θ,X)

T (X) is called sufficient statistic if it contains all the information that X has
about θ, i.e.,

I(θ, T (X)) = I(θ,X)

Remark. Taking the same example of classification. If the neural network f
is a sufficient statistic, then we would have I(X;Y) = I(X; f(Y)). It means
the embedding f(Y) and the original image Y contain the same amount of
information about label X.

2 Information Bottleneck in Deep Learning

In a typical supervised learning problem, we use input data from X to pre-
dict output label from Y . Ideally, we want the neural network to learn some
embedding X̂ such that all the information relevant to Y is kept and other in-
formation is discarded. We consider the Markov chain Y → X → X̂. To discard

5

Figure 1: Source: Deep Learning and the Information Bottleneck Principle

irrelevant information, we want to maximally compress X so that only infor-
mation about Y is kept. However, for a lossy compression, by Data-processing
Inequality, I(Y, X̂) ≤ I(Y,X). It means that X̂ will loss information about
Y . Obviously, there is a trade-off between compressing the representation and
preserving meaningful information about Y . Information bottleneck method is
a principle designed to extract relevant information in X about Y . It’s called
”information bottleneck” because we are passing the information in X about
Y through a ”bottleneck” (e.g., a neural network) to form a more compact
representation X̂.

Definition 2.1 (Information Bottleneck Principle). To find a optimal repre-
sentation X̂, we want to minimize the functional

I(X̂,X)− βI(X̂, Y)

Remark. 1. Minimizing I(X̂,X) is maximizing compression. Without com-
pression (X̂ has the same information asX), we have I(X̂,X) = I(X,X) =
H(X). With maximal compression (X̂ only contains information of Y),
we have I(X̂,X) = I(Y,X). And I(Y,X) = H(X)−H(X|Y) ≤ H(X).

2. Maximizing I(X̂, Y) is maximizing the relevant information in X̂ about
Y . This is obvious from the definition of mutual information.

3. β is the Lagrange multiplier. If β = 0, X will be maximally compressed
at the risk of losing a lot of relevant information about Y . If β → ∞, X̂
would be a super detailed representation of X without any compression.

Now, if we consider an actual neural network as follow: This network forms
the Markov chain Y → X → h1 → · · · → hm → Ŷ . By Data-processing
inequality, we have

H(X) = I(X,X) ≥ I(X,h1) ≥ · · · ≥ I(X,hm) ≥ I(X, Ŷ)

and

I(Y,X) ≥ I(Y, h1) ≥ · · · ≥ I(Y, hm) ≥ I(Y, Ŷ)

6

By Information Bottleneck Principle, we want to maximize I(Y, Ŷ) while mini-
mizing I(X, Ŷ). For each layer, we want to maximize I(Y, hi) while minimizing
I(hi−1, hi).

Theorem 5 (Information Plane). Most supervise learning algorithms try to
balance the trade-off between the performance on sampled data and the gener-
alization to unseen data. Naftali Tishby argues that it’s reasonable to consider
I(Y, T) as a measure of performance and consider I(X,T) as a control of gen-
eralization.

2.1 Optimization Phases of Neural Network

Source: OPENING THE BLACK BOX OF DEEP NEURAL NETWORKS
VIA INFORMATION.

2.2 Input Compression Bound

Definition 2.2 (Vapnik-Chernovenkis (VC) bound). As learned in lecture, the
bound is

R(fERM) ≤ R(f∗) + 2

√
1

2n
log

4|F|
δ

where n is the number of samples, δ is the confidence, and |F| is the size of the
hypothesis class. This bound becomes vacuous for neural networks which have
super large |F|.

Definition 2.3 (Input Compression Bound). We want to get a bound that
depends on the information of input instead of the large hypothesis class. The
bound we will get is

R(fERM) ≤ R(f∗) + 2

√
1

2n

(
2I(Tϵ,X) + log

1

δ

)

7

where Tϵ is a ϵ partition of X. Tϵ can be considered as embedding space where
each X is compressed into some code. Note that if we can reduce I(Tϵ, X) by k
(k more bits of compression), we can reduce the training samples by a factor of
2k!

This figure above shows the partition of the input space. We partition the
input space X into small red balls b1, b2, · · · . Each red ball can either be 0 or
1. Under this partition, each x ∈ X has a more compact binary representation,
e.g., b1 = 0, b2 = 1, b3 = 1, · · · . We can think of supervise learning as creating a
good partition of X that aligns with the labels Y . The typical set of X has size
2H(X) (you can read more in Elements of Information Theory 3.29). Similarly,
each red ball has size 2H(X|Tϵ). Then the size of Tϵ (the number of red balls)

is |Tϵ| = 2H(X)

2H(X|Tϵ)
= 2I(X,Tϵ). If we consider the hypothesis class of Boolean

function that maps x to the binary representation b1 = 0, b2 = 1, · · · , b|Tϵ|, this

class has size 22
I(X,Tϵ)

. Then, we can get the input compression bound from

log 22
I(X,Tϵ)

.

8

2.3 I(T, Y) and Performance

Source
If we know X,Y , we will have optimal lossy compression which is the black
line. Then, the model’s performance is subject to the compression loss. Since
we only have finite data, the compression is worse and has the red line as the
lower bound. The model’s performance is subject to an additional finite sample
loss.

3 References

1. A Mathematical Theory of Communication

2. Elements of Information Theory

3. Deep Learning and the Information Bottleneck Principle

4. Opening the black box of Deep Neural Networks via Information

5. Learning and generalization with the information bottleneck

6. A great unpublished note from Santosh Venkatesh on An Axiomatic Ap-
proach to Information

9

https://www.youtube.com/watch?v=bLqJHjXihK8&t=1496s

AWS Tutorial

ESE 5460

October 2023

Contents

1 Overview 1

2 Why use the Cloud? 2

3 Creating an Account 3

4 Launching a GPU instance 3
4.1 Use Penn Campus Network or University VPN 3
4.2 Switch your zone to Virginia (U.S East) on the top right of the

screen. 3
4.3 Name and Tags . 3
4.4 Select Amazon Machine Image (AMI) 4
4.5 Choose Instance Type . 5
4.6 Create a keypair from the EC2 console 5
4.7 Security Groups . 6
4.8 Launch the Instance . 6
4.9 Stop and Start Instance . 6

5 Using Your Instance 7
5.1 Use Your Instance in VS Code 7
5.2 Check the deep learning environment 7
5.3 SCP: Secure Copy for File Transfering 7
5.4 tmux . 8
5.5 Use Your Instance in Jupyter Notebook 8

1 Overview

The EC2 (Elastic Cloud Compute) service on AWS (https://aws.amazon.com)
offers cloud computing infrastructure and provides access to GPU resources.
Each student will be given compute credits to use on AWS. AWS could be used
for the programming assignments and is a useful tool for the projects. EC2
gives you access to GPU instances which are charged by the hour. In this short
tutorial, we will go over the basics, best practices and some useful tools

1

2 Why use the Cloud?

• Use latest GPU architectures
• Easier to scale
• No maintenance costs

2

3 Creating an Account

You will get an email titled “AWS @ Penn access” from isc-cloud-solutions@isc.upenn.edu
with instructions on how to create your account and use the AWS credits allo-
cated to ESE 546.

4 Launching a GPU instance

4.1 Use Penn Campus Network or University VPN

VPN Link

4.2 Switch your zone to Virginia (U.S East) on the top
right of the screen.

We are going to use this zone and it generally gives you better availability for
the machines.

4.3 Name and Tags

Search and go to the EC2 service in AWS and click on Launch instance to
begin.

3

https://www.isc.upenn.edu/how-to/university-vpn-getting-started-guide

In Name and tags,

1. Give a name to your instance (it can be anything but it would be good to
include your name e.g. pratikac-instance)

2. Click on Additional Tags, create a key called ”Owner” and value as
”your Penn email including everything after @” (i.e., pratikac@seas.upenn.edu
for Pratik). Then add Intsances and Volumes to the Resource types. We
have scripts to prevent people from deleting each other’s instances acci-
dentally. So you will not be able to interact with any instance or volume
that was not launched with ”Owner:your-key”.

4.4 Select Amazon Machine Image (AMI)

Under Application and OS Images, click Browse more AMIs, search
Deep Learning AMI, and select “Deep Learning AMI GPU PyTorch ...
(Ubuntu ...)”.

You can also use a standard Ubuntu but you will have to install everything
(deep learning environment and libraries) yourself. so unless you know what
you are doing, I would advise using the AMI.

4

4.5 Choose Instance Type

Under Instance type, change the instance type to one of the GPU instance.
You should use the following instances:

1. g5.xlarge: 1 Nvidia A30 GPU (4 CPU cores, 16 GB memory). This should
be sufficient for almost everyone and it is also the cheapest.

2. g5.2xlarge: 1 Nvidia A30 GPU (8 CPU cores, 32 GB memory). If you
want run a dataloader with many threads, e.g., for lots of augmentation.

3. g5.12xlarge: 4 Nvidia A30 GPUs (48 CPU cores, 192 GB memory). Do
not use this in general. Use it only if you need all 4 GPUs. This instance
costs 12 dollars/hour so you will use your 100-150 dollars or so credits
very quickly.

4. You can also use g4 instances and they are only a tiny bit slower (these
have Nvidia T4 GPU which is the same one that Google Colab, so they
are equally fast).

You can run multiple training runs simultaneously on the same GPU without
changing any of your code. This is not different from running multiple processes
on the same CPU. You do not need multiple GPUs just because you are training
multiple neural networks. Do not use the other g5 instances unless you
know for sure that you will benefit from them (and you know what you are
doing).

4.6 Create a keypair from the EC2 console

Under the Key pair (login) section, Create new key pair. Without this
keypair you will not be able to SSH into the instance and will not be able to
use it. It is a good idea to call the keypair by your Penn email, e.g., pratikac
for Pratik.

5

4.7 Security Groups

Under Network Settings, choose the option to Select existing security
group and select the security group titled ”ssh”. Do not try to create a new
one (you will not be able to). We have forwarded a few ports (they are: 60000-
60100, 1024-1048, and 22) that you can use to connect to Jupyter, VScode,
Tensorboard, etc. Make sure that the option ”Auto-assign public IP” to set
to enable as in some cases it might be set to disable by default (you might need
to click the edit button on right top to see the option).

4.8 Launch the Instance

Click the Launch Instance button and you have a launched GPU instance to
play with!

4.9 Stop and Start Instance

We have created a script that shuts down idle instances after 1 hour. If you see
that your instance has ”stopped” you can just start it using the button at the
top. Note: Always stop your instance after use. Although the provided

6

credits should suffice for this course, it is important to use resources carefully.
An unstopped instance can quickly deplete the credits. Stopping the instance
will not delete your data. Terminating the instance will delete all your data.

5 Using Your Instance

5.1 Use Your Instance in VS Code

Click Connect and you will be directed to a page called Connect to in-
stance. Choose the SSH Client tab. You will see an example: “ssh -i ‘your-
pennkey.pem’ address.com”. You can use this to access your instance from your
laptop. Important: you need to change ‘your-pennkey.pem’ to ‘/absolute-
path/your-pennkey.pem’ so that your computer can find the file.

Go to vs code, press command + shift + P, type in ssh, and select add
new SSH Host. Then type in “ssh -i ‘/absolute-path/your-pennkey.pem’ ad-
dress.com”. You will be connect to your instance.

5.2 Check the deep learning environment

You can check your environment by opening an terminal in the vs code window
and type

conda info --env

You can activate the environment you want, e.g., pytorch, by

conda activate pytorch

and run your code by

python file-name.py

5.3 SCP: Secure Copy for File Transfering

You can use the following command to copy file from your computer to your
AWS instance and vice versa. You can search for more details online.

scp -i ’/absolute-path/penn-key.pem’ source_path_of_file destination_path_of_file

7

5.4 tmux

Training may take a long time. If you accidentally closed the terminal or vs
code, the terminal process will be closed which means your training will be
killed and lost. You don’t want this to happen! If you use tools like tmux, even
if you close your terminal, the process will still be ran in the background and
you can access it when you come back.Basic commands:

5.5 Use Your Instance in Jupyter Notebook

Follow this tutorial! Link

8

https://dataschool.com/data-modeling-101/running-jupyter-notebook-on-an-ec2-server/

	POD 1
	Introduction
	How is the course going?
	Entropy and Information Gain
	Norms

	POD 2
	Logistics
	Questions Collections
	KNN and Decision Tree
	MLE and MAP

	POD 3
	Logistic
	Understand how different regularization penalizes weight
	Bias and Variance
	Streamwise/Stepwise/Stagewise Search
	Different forms of the error

	POD 4
	Mutual Information
	Generalized Linear Models
	Gradient Descent Methods

	POD 5
	Convolutional Neural Network

	POD 8
	SVD, PCA, Autoencoder

	POD 9
	Recommend System, Evaluation Metrics

	POD 10
	K-Mean, GMM, EM

	POD 11
	Naive Bayes and LDA

	POD 12
	Reinforcement Learning

